Schwingende Berge
Das Matterhorn wirkt wie ein unverrückbarer, massiver Berg, der in der Landschaft über Zermatt thront. Eine soeben in der Fachzeitschrift Earth and Planetary Science Letters veröffentlichte Studie zeigt nun aber, dass dieser Eindruck täuscht. Ein internationales Forschungsteam hat nachgewiesen, dass das Matterhorn dauernd leicht in Bewegung ist: Der Gipfel schwingt in gut zwei Sekunden um wenige Nano- bis Mikrometer hin und her, angeregt durch seismische Wellen in der Erde. Diese werden durch natürliche Quellen wie die Gezeiten, die Meeresbrandung, den Wind und Erdbeben oder durch menschliche Aktivitäten erzeugt.
«Grundsätzlich bringen die Bewegungen des Untergrunds jedes Objekt zum Schwingen, was wir glücklicherweise nicht spüren, sondern nur mit sensiblen Messgeräten feststellen können» betont Donat Fäh vom Schweizerischen Erdbebendienst an der ETH Zürich. Die sogenannten Eigenfrequenzen hängen in erster Linie von der Geometrie des Objekts und seinen Materialeigenschaften ab. Das Phänomen wird auch bei Brücken, Hochhäusern und sogar bei Bergen beobachtet. «Wir wollten wissen, ob sich solche Schwingungen auch an einem grossen Berg wie dem Matterhorn nachweisen lassen», sagt Samuel Weber, der die Studie während eines Postdoktorats an der Technischen Universität München (TUM) durchführte und mittlerweile beim WSL-Institut für Schnee- und Lawinenforschung SLF arbeitet. Er betont, dass die interdisziplinäre Zusammenarbeit mit Forschenden des Schweizerischen Erdbebendienstes an der ETH Zürich, des Instituts für Technische Informatik und Kommunikationsnetze der ETH Zürich sowie der Geohazards Research Group der Universität Utah (USA) für den Erfolg dieses Projekts besonders wichtig war.
Hochalpine Messeinrichtungen
Für die Studie installierten die Wissenschaftler am Matterhorn mehrere Seismometer, eines davon unmittelbar am Gipfel auf 4470 Meter über Meer und ein weiteres im Solvay-Biwak, einer Notunterkunft am Nordostgrat, besser bekannt als Hörnligrat. Eine weitere Messstation am Fuss des Berges ein, diente als Referenz. Die grosse Erfahrung von Jan Beutel (ETH Zürich/Universität Innsbruck) und Samuel Weber mit Einrichtungen zur Messung von Felsbewegungen im Hochgebirge kam dem Team beim Aufbau des Messnetzes zugute. Die Daten werden heute automatisch an den Erdbebendienst übermittelt und für spezifische Analysen verwendet.
Die Seismometer zeichneten alle Bewegungen des Berges mit hoher Auflösung auf. Durch eine 80-fache zeitliche Beschleunigung wurden die aufgezeichneten Schwingungen für das menschliche Ohr hörbar gemacht. Aus den Messdaten leitete das Team Frequenz und Richtung der Resonanzschwingungen ab. Die Messungen zeigen, dass das Matterhorn mit einer Frequenz von 0,42 Hertz ungefähr in Nord-Süd-Richtung und mit einer zweiten, ähnlichen Frequenz in Ost-West-Richtung schwingt.
Verstärkte Schwingungen am Gipfel
Im Vergleich zur Referenzstation am Fuss des Berges waren die gemessenen Bewegungen im Bereich der Eigenfrequenz auf dem Gipfel bis zu 14-fach verstärkt, betrugen aber bei Anregung durch die seismische Bodenunruhe auch dort lediglich wenige Nanometer bis Mikrometer. Die Verstärkung der Bodenbewegungen mit zunehmender Höhe lässt sich dadurch erklären, dass der Gipfel frei schwingen kann, während der Fuss des Bergs fixiert ist. Man kann das mit einem Baum im Wind vergleichen, bei dem sich die Krone stärker als der Stamm bewegt. Verstärkungen der Bodenbewegung am Matterhorn konnten auch bei Erdbeben gemessen werden. Die Analyse der seismischen Bodenunruhe und der Erdbebenanregungen wird beispielsweise verwendet, um Fels- und Hanginstabilitäten in Bezug auf ihr Verhalten bei Erdbeben zu beurteilen.
Jeff Moore von der Universität Utah, der die Studie am Matterhorn initiiert hat, erklärt: «Wir vermuten, dass Gebiete, in denen die Bodenvibrationen verstärkt werden, anfälliger für Rutschungen und Felsstürze sein könnten, wenn ein Berg von einem Erdbeben erschüttert wird.»
Solche Schwingungen sind keine Eigenart des Matterhorns. Es ist bekannt, dass viele Berge in ähnlicher Art und Weise schwingen. Forschende des Erdbebendienstes führten dazu Vergleichsmessungen am Grossen Mythen durch. Dieser Gipfel in der Zentralschweiz besitzt eine ähnliche Form wie das Matterhorn, ist aber deutlich kleiner.
Wie erwartet schwingt der Grosse Mythen mit einer rund 4-mal höheren Frequenz als das Matterhorn, denn kleinere Objekte schwingen grundsätzlich mit höheren Frequenzen. Die Forschenden der Universität Utah haben die Resonanzschwingungen des Matterhorns und des Grossen Mythen im Computer simuliert und konnten sie dadurch sichtbar machen. Die US-Wissenschaftler hatten bisher vor allem kleinere Objekte untersucht wie die Felsbögen im Arches-Nationalpark in Utah. «Es war spannend zu sehen, dass unsere Simulationen auch für einen grossen Berg wie das Matterhorn funktionieren und die Messresultate diese bestätigen», sagt Moore.