Neuer, besserer Corona-Virus-Schnelltest
Ein grosses Manko von Antigen-Schnelltests – das hat zuletzt die Studie einer Forschungsgruppe um Heinrich Scheiblauer vom deutschen Paul-Ehrlich-Institut nachgewiesen – ist ihre fehlende Zuverlässigkeit. Jedes fünfte von 122 überprüften Testkits verschiedener Hersteller fiel durch und genügte nicht einmal der Minimalanforderung, 75 Prozent der mit hoher Viruslast betroffenen Probanden als Corona-positiv zu erkennen. Ein weiteres Manko: Die Tests sagen nur, ob der Proband infiziert ist oder nicht. Aber sie liefern keine Information über den Verlauf der Infektion beziehungsweise der Immunreaktion der Probanden.
Ein neuer, vom PSI entwickelter Test, der anders als Antigen-Tests nicht direkt Bestandteile des Virus nachweist, sondern die Antikörper, die das Immunsystem als Reaktion auf die Infektion produziert, verspricht nun erheblich mehr Aussagekraft. Er ist genauso günstig, schnell und einfach zu handhaben, zudem lassen sich mit ihm verschiedene Erreger gleichzeitig identifizieren – etwa die der Grippe. «Damit liefert er auch mehr Daten als bisherige Antikörper-Schnelltests, die dem Nachweis dienen, ob jemand bereits eine Corona-Infektion hinter sich hat», sagt Yasin Ekinci, Leiter des Labors für Röntgen-Nanowissenschaften und -Technologien am PSI, der das Projekt zur Entwicklung des Tests betreut hat.
Der zentrale Baustein des Tests besteht aus einer kleinen rechteckigen Scheibe normalen Plexiglases, die dem Objektträger eines Mikroskops sehr ähnlich ist. Sie besteht aus zwei Schichten: Die untere ist einen Millimeter dick, die obere 0,2 Millimeter. In die untere haben die Forschenden per Elektronenstrahl-Lithografie – einem extrem präzisen Verfahren zum Fräsen von festen Materialien, das sonst etwa in der Herstellung von Computerchips eingesetzt wird – ein Relief geprägt. Nachdem sie diese Master-Vorlage so erstellt hatten, nutzten die Forschenden diese für die sogenannte Nanoimprint-Lithografie, was den Prägevorgang erheblich beschleunigt und vergünstigt.
Entscheidend für den Test ist eine Passage, auf der die Höhe des Kanals von 3,4 auf 0,8 Mikrometer sinkt. In dieser von den Forschenden sogenannten „Einfangregion“ bleiben zuvor dem Blut zugesetzte Partikel an vordefinierten Stellen stecken – je nachdem, welche Erreger im Blut vorliegen. «Für den Test würde der Proband zum Arzt oder in ein Testzentrum gehen», erläutert Mortelmans. Dort entnimmt man ihm wie bei einem Zuckertest mit einem Piks in den Finger ein Tröpfchen Blut. In das Blut mischt man eine Flüssigkeit, in der spezielle künstliche Nanopartikel schwimmen. Deren Oberfläche hat die gleiche Struktur wie die berüchtigten Spike-Proteine des Sars-CoV-2-Virus, an die die Antikörper des Menschen andocken, um die Krankheit zu bekämpfen. Ausserdem werden kleine fluoreszierende Teilchen beigemischt, die sich an die Sars-CoV-2-Antikörper des Menschen anheften.
Das heisst also: Befinden sich Antikörper gegen Sars-CoV-2 im zu testenden Blut, heften sich ihnen zunächst die fluoreszierenden Teilchen an, und gemeinsam binden sie dann an die Virus-artigen Strukturen der deutlich grösseren Nanopartikel und bleiben mit diesen an eben jener vordefinierten Stelle stecken, die dem Durchmesser dieser Nanopartikel entspricht. «Das ist dort, wo der Kanal genau 2,8 Mikrometer hoch ist», sagt Mortelmans. An dieser Stelle sammeln sich nun die Nanopartikel, an denen Antikörper des Menschen samt ihrer leuchtenden Anhängsel angedockt sind. Legt man die Scheibe unter ein Fluoreszenz-Mikroskop, kann man das Leuchtsignal erkennen. Es ist umso heller, je mehr Antikörper der Patient gebildet hat. Je deutlicher das Signal, desto stärker also die Immunreaktion. So lässt sich Covid-19 eindeutig diagnostizieren. «Ausserdem kann man anhand der Signalstärke erkennen, ob das Immunsystem gut reagiert und ein milder Verlauf zu erwarten ist – oder ob es womöglich sogar überreagiert und Komplikationen drohen», erläutert Mortelmans.
Multifunktionale Mikrostruktur
Mit der dünnen Plexiglasschicht als Deckel weist die Scheibe nun drei parallel verlaufende Kanäle auf, durch die eine Flüssigkeit von einem Ende der Scheibe zum anderen strömen kann. Jeder von ihnen ist beim Einlass 300 Mikrometer (also 0,3 Millimeter) breit und 3,4 Mikrometer hoch. Am Auslass sind die Kanäle fünf Mal so breit, aber nur einen Mikrometer hoch. Zwischendrin verjüngt sich der Kanal entlang einer gewissen Strecke auf nur wenige Mikrometer Breite, und an einer Stelle ist er nur 0,8 Mikrometer hoch – etwa 100 Mal dünner als ein menschliches Haar.
«Diese spezielle Struktur der Kanäle dient gleich mehreren Zwecken», sagt Studien-Erstautor Thomas Mortelmans, Doktorand am Swiss Nanoscience Institute der Universität Basel, der seine Arbeiten im Labor für Röntgen-Nanowissenschaften und -Technologien des PSI durchführte. Zum einen sorgt sie für einen starken Kapillareffekt, wie man ihn sonst etwa von den Leitungsbahnen der Bäume kennt, die so das Wasser aus ihren Wurzeln in ihre Kronen leiten. Dafür ist keinerlei Pumpe notwendig. Die Kraft resultiert aus der Grenzflächenspannung zwischen Flüssigkeit und fester Oberfläche. Sie saugt das Wasser quasi durch die engen Bahnen. Genauso geschieht es bei den Kanälen im Plexiglas – nur, dass hier statt des Wassers ein Bluttröpfchen hindurchströmt.
One rapid test with many possibilities
There is no risk of the channel becoming blocked by other particles in the blood. The viruses themselves are only around 0.12 micrometre in size and flow through without resistance. Only the red blood cells next to the nanoparticles are larger than the narrowest part of the channel. "At the beginning of our development project, they actually caused problems," says Mortelmans. "But we have optimized the channel so that they now slip through." The researchers took advantage of the fact that the cells are flexible and compressible: "The capillary force is now so great that it squeezes the blood cells through every narrowing of the channel."
The test opens up even more possibilities beyond diagnosing Covid-19. In addition, nanoparticles of different sizes and with different surface structures could be mixed into the blood to enable simultaneous testing for other diseases. In the study, Mortelmans did this using particles whose surface corresponds to influenza A viruses. In the experiments, two spots in the capture region lit up: one for Covid-19 and one for the flu.
In addition, it is possible to identify different antibodies that the immune system produces in different stages of the disease. For example, one could use green fluorescent particles that only attach to antibodies that appear in the early phase of the infection, and red fluorescent particles for antibodies that are produced by the immune system at later stages. "The test can be extended in many ways," says Mortelmans. "We could, for example, test ten different diseases at once without any problems and use four colors as well." Of course, the number of channels could also be increased to test even more variants. In principle, the second and third channels are only there to confirm the result of the first. However, they could also be used to carry out different tests. "In principle, we have a system here similar to Lego, in which you can combine different components," says project manager Yasin Ekinci.
The researchers began their work on the new test shortly after the start of the coronavirus pandemic. "We were working on a diagnostic test for Parkinson's at the time," says Ekinci. "When the pandemic took hold, we asked ourselves how we, as a research institute, could contribute to overcoming it." However, the development took longer because the test is so novel, because little was known about the virus at the beginning, and because patient samples were also difficult to obtain.
For the study, the device was tested with 29 blood samples – 19 of which came from infected people and 10 from non-infected people. With the exception of one false-negative case, the test was always correct. This too was identified during the follow-up test. "Of course we need to do a lot more testing to make a solid statement about reliability, and there's still a lot of room for improvement. But it is very promising," says Ekinci.
In addition, the test should become even easier to carry out. "We're working on making it just as easy to do with saliva instead of blood," Mortelmans reports. "We also want to be able to use a mobile phone camera instead of a microscope to read the signals. Modern devices are now capable of doing this." Such a test currently takes between 10 and 30 minutes. But it also be possible to do it in two minutes; it is currently being optimised with that aim. "Our vision is a technology," says Ekinci, "with which we can simultaneously diagnose several diseases and variants of Covid and flu reliably, quickly, and inexpensively via mobile phone. Our novel concept is capable of making this a reality."