Meister der Defekte
Der Begriff Molybdändisulfid kommt manchen Autofahrern und Mechanikern vielleicht bekannt vor. Kein Wunder: Der Stoff, den der US-Chemiker Alfred Sonntag in den 1940er-Jahren entdeckte, wird bis heute als Hochleistungsschmiermittel in Motoren und Turbinen, aber auch bei Bolzen und Schrauben eingesetzt. Das liegt an der speziellen, chemischen Struktur dieses Feststoffs, dessen einzelne Materialschichten gegeneinander leicht verschiebbar sind. Molybdändisulfid (chemisch MoS2) schmiert aber nicht nur gut, sondern es ist auch möglich, eine einzelne atomare Schicht dieses Materials abzublättern oder synthetisch auf Wafer-Skala wachsen zu lassen. Die kontrollierte Isolation einer MoS2-Monolage gelang erst vor einigen Jahren, gilt jedoch schon heute als ein materialwissenschaftlicher Durchbruch mit enormem technologischen Potential. Mit genau dieser Materialklasse will das Empa-Team nun arbeiten.
Die Schichtstruktur aus einzelnen Atomlagen macht diesen Stoff interessant für Physiker auf der Suche nach Basismaterialien für Nanocomputer der nächsten Generation. MoS2 – und seine chemischen Verwandten, die sogenannten Übergangsmetall-Dichalcogenide (TMDs) – sind eines der «heissesten» Themen in einer ganzen Reihe von zweidimensionalen (2D) Materialien. TMDs sind 2D-Halbleiter und haben eine direkte Bandlücke, jedoch nur, wenn sie als Monolage vorliegen, was sie besonders für ultimativ miniaturisierte elektronische Schaltkreise oder optische Detektoren interessant macht. Die robusten quantenmechanischen Eigenschaften von 2D-Materialien werden auch intensiv für die Nutzung in der Quantenmesstechnik, Quantenkryptographie und Quanteninformationstechnologie erforscht.
Dabei kommt es nicht nur aufs Grundmaterial, sondern vor allem auf das Management der Defekte an: Analog zur Dotierung von «klassischen» Halbleitern in integrierten Schaltkreisen oder Fremdionen in Festkörperlasern, sind atomare Defekte «das Salz in der Suppe», speziell bei 2D-Materialien, so Schuler.
Hauchdünne Quantencomputer?
Der Empa-Forscher will atomare Defekte in TMDs mit Hilfe eines neuartigen Messinstruments charakterisieren und deren Eignung als sogenannte Quantenemitter untersuchen. Quantenemitter bilden die Schnittstelle zwischen zwei Welten: dem Elektronenspin – das quantenmechanische Pendant zum Drehmoment des Elektrons – der sich zum Verarbeiten von Quanteninformation eignet, und Photonen, also Lichtteilchen, mit deren Hilfe man Quanteninformationen über weite Strecken verlustfrei übertragen kann. 2D-Materialien bieten den grossen Vorteil, dass die relevanten Energieskalen viel grösser sind als bei 3D-Materialien, so dass man die Technologie voraussichtlich auch oberhalb von kryogener Umgebung – im Idealfall sogar bei Raumtemperatur – nutzen kann. Zudem liegen die Defekte gezwungenermassen an der Oberfläche des 2D-Materials, wodurch sie viel einfacher auffindbar und manipulierbar sind.
Doch zunächst gilt es, die Defekte in der zweidimensionalen MoS2-Schicht aufzuspüren und deren elektronische und optische Eigenschaften präzise zu untersuchen. Präzise, das heisst in diesem Fall: Der untersuchte Ort wird auf ein Angström genau erkundet. Zum Vergleich: 1 Angström verhält sich zu einem Meter wie 4 cm zur Distanz Erde-Mond (400'000 km). Und der Schnappschuss, mit dem die elektronische Anregung des Quantenpunkts aufgezeichnet wird, muss auf eine Pikosekunde (ps) genau sein – 1 ps ist ein so kleiner Bruchteil einer Sekunde wie 2 Tage im Vergleich zum Alter des Planeten Erde (5 Mrd. Jahre). Diese ultrakurzen und atomgenauen Messungen liefern dann ein sehr detailliertes Bild davon, welche dynamischen Prozesse sich auf atomarer Skala abspielen und was diese Prozesse beeinflusst.
But first, the defects in the two-dimensional MoS2 layer have to be detected and their electronic and optical properties have to be investigated precisely. Precise, in this case means that the location under investigation is explored to the accuracy of one angstrom. For comparison: 1 angstrom is to a meter what 4 cm is to the distance Earth-Moon (400,000 km). And the snapshot used to record the electronic excitation of the quantum dot must be accurate down to one picosecond (ps) – 1 ps is as small of a fraction of a second as 2 days are compared to the age of planet Earth (5 billion years). These ultrashort and atomically precise measurements then provide a very detailed picture of what dynamic processes are occurring on an atomic scale and what factors are affecting those processes.
Eine Apparatur aus zwei Hälften
Die Apparatur, in der die Experimente stattfinden sollen, steht bereits in einem Raum im Untergeschoss des Laborgebäudes der Empa in Dübendorf – dort, wo der Boden mechanisch am stabilsten ist. «Wir haben über eineinhalb Jahre Vorbereitungs- und Entwicklungsarbeit investiert, um unseren Versuchsaufbau fertigzustellen», erläutert Bruno Schuler. «Im Oktober 2022 haben wir die beiden Hälften unserer Anlage miteinander verbunden und konnten erstmalig Lichtwellen-induzierte Ströme messen. Das Prinzip funktioniert! Ein riesiger Meilenstein in dem Projekt.»
Die beiden Hälften, mit denen Schulers Team nun arbeiten wird, das ist einerseits ein Rastertunnelmikroskop (STM). Mit einer ultradünnen Spitze wird die atomare Oberfläche des Versuchsobjekts gescannt. An einer Defektstelle, also einer Fehlstelle oder einem «fremden» Atom in der Struktur, positionieren die Wissenschaftler die Spitze für den Versuch.
Dann kommt die zweite Hälfte der Anlage zum Einsatz, die Schulers Kollege Jonas Allerbeck aufgebaut hat: Ein 50-Watt-Infrarotlaser schickt ultrakurze Laserimpulse auf einen optisch nichtlinearen Lithiumniobat-Kristall. Dadurch wird ein phasenstabiler elektromagnetischer Impuls im Terahertz-Frequenzbereich erzeugt. Dieser Impuls hat die Besonderheit, dass er nur eine einzige Lichtschwingung lang ist und mit spezieller Optik in ein Paar aus Anrege- und Abtastimpuls aufgeteilt werden kann – die beide mit variabler Verzögerung aufeinanderfolgen und auf stroboskopische Art die Elektronendynamik messen können.
Ein Elektron «hüpft» auf die Defektstelle
Die beiden Impulse werden nun ins STM hineingeschickt und zur Probenspitze gelenkt. Der erste Impuls löst ein Elektron von der Spitze ab, das auf die Defektstelle der zweidimensionalen MoS2 –Schicht «hüpft» und dort eine elektronische Anregung auslöst. «Das kann entweder eine elektrische Ladung, eine Spin-Anregung, eine Gitterschwingung oder ein Elektronen-Loch-Paar sein, das wir dort erzeugen», erläutert Schuler. «Mit dem zweiten Impuls schauen wir uns dann einige Pikosekunden später an, wie unsere Defektstelle auf den Anregeimpuls reagiert hat, und können so Dekohärenzprozesse und Energieübertragung in das Trägermaterial untersuchen.»
Auf diese Weise kombiniert Schuler als einer von nur wenigen Spezialisten weltweit Pikosenkunden-kurze Zeitauflösung mit einer Methode, die einzelne Atome «sehen» kann. Dabei nutzt das Team die intrinsische Lokalisierung der Zustände in dem 2D-Materialsystem, um die Anregungen länger an einem Ort festzuhalten. «Das ultraschnelle Lichtwellen-Rastersondenmikroskop eröffnet uns faszinierende, neue Einblicke in quantenmechanische Prozesse auf atomarer Skala, und 2D-Materialien sind eine einzigartige Materialplattform, um diese Zustände kontrolliert zu erzeugen», sagt der Empa-Forscher.
In this way, Schuler is one of only a few specialists in the world to combine picosecond-short time resolution with a method that can "see" individual atoms. The team makes use of the intrinsic localization of states in the 2D material system to hold excitations in one place long enough to be detected. "The ultrafast lightwave scanning probe microscope enables fascinating new insights into quantum mechanical processes at the atomic scale, and 2D materials are a unique materials platform to create these states in a controlled way," says the Empa researcher.
Ein «ERC Starting Grant»
Bruno Schuler und sein Team, die beiden Postdocs Jonas Allerbeck und Eve Ammerman, sowie die Doktoranden Lysander Huberich und Laric Bobzien, werden von Fördergeldern des «European Research Council» unterstützt. Der «ERC Starting Grant» fördert besonders talentierten Wissenschaftsnachwuchs – die «Champions League» der europäischen Forschungsgemeinschaft. Schuler brachte beste Voraussetzungen mit: Er studierte Physik an der ETH Zürich und spezialisierte sich in seinem Doktorat an der Geburtsstätte der Rastertunnelmikroskopie, dem IBM-Forschungslabor in Rüschlikon. Als Postdoc und später als Gruppenleiter am «Lawrence Berkeley National Lab» in den USA forschte er zum ersten Mal an 2D-Materialien und koordinierte ein internationales Forschungsteam.
Diese Erfahrung will er nun einsetzen, um die Empa als Forschungsstandort für Quantennanotechnologie zu stärken und weiterzuentwickeln. «Wir haben das Privileg, mit diesem Projekt wissenschaftliches Neuland zu betreten und zum ersten Mal Dinge zu beobachten, die vorher noch kein Mensch gesehen hat», so Schuler. An der Empa ist Bruno Schulers Forschungsgruppe Teil des «nanotech@surfaces» Labors unter Leitung von Roman Fasel. Die international renommierte Gruppe forscht an Quanteneffekten in niederdimensionalen organischen und anorganischen Nanostrukturen, die eine Grundlage für Quantencomputer der nächsten Generation bilden könnten.