Das Zellskelett als Ziel für neue Wirkstoffe
Das Protein Tubulin ist ein zentraler Baustein des Zellskeletts, auch Zytoskelett genannt. In den Zellen ordnen sich die Tubulinmoleküle zu röhrenförmigen Strukturen, den Mikrotubuli-Filamenten. Diese geben Zellen ihre Form, helfen dabei, beispielsweise Proteine und grössere Zellbestandteile zu transportieren, und spielen eine entscheidende Rolle bei der Zellteilung.
Tubulin erfüllt also vielfältige Funktionen in der Zelle und interagiert dafür mit zahlreichen anderen Substanzen. «Tubulin kann verblüffend viele unterschiedliche Proteine und kleine Moleküle binden, einige Hundert bestimmt», sagt Tobias Mühlethaler, Doktorand im PSI-Labor für Biomolekulare Forschung und Erstautor der Studie. Über solche Bindungen wird das Protein in seiner Funktion gesteuert. Auch viele Medikamente docken an Tubulin an und verhindern beispielsweise die Zellteilung bei Tumoren.
«In diesem Projekt sind wir der grundlegenden Frage nachgegangen, wie viele Bindungsstellen an diesem wichtigen Protein insgesamt existieren», erklärt Mühlethaler. «Wenn wir neue entdecken, lassen sich diese möglicherweise therapeutisch nutzen.»
Von der Virtualität ins Labor
In Computersimulationen in Zusammenarbeit mit dem Instituto Italiano di Tecnologia in Genua durchforsteten die Forschenden die Struktur des Proteins: Sie identifizierten Stellen, an denen andere Moleküle am Tubulin besonders gut andocken könnten. Das sind die sogenannten Bindungstaschen.
Anschliessend suchten die Forschenden im realen Laborexperiment nach eben solchen Stellen. Dafür verwendeten sie die Methode des Fragment Screenings: Zu Hunderten Kristallen von Tubulin gaben die Forschenden Lösungen mit Fragmenten von Molekülen, die für die Ausgangsverbindungen vielversprechender Wirkstoffe typisch sind. Die Tubulin-Kristalle konnten sich innerhalb einer Stunde mit der Fragmentlösung vollsaugen. Schliesslich wurden die Kristalle aus der Flüssigkeit gefischt und mit Synchrotronstrahlung durchleuchtet. Aufgrund des Beugungsmusters, das dabei entsteht, können die Forschenden auf die Struktur des Kristalls zurückrechnen. So lässt sich feststellen, ob und wo die Molekülfragmente an das Protein gebunden haben.
«Beide Methoden, sowohl die Computersimulationen als auch das Fragment Screening, haben jeweils ihre Stärken und Schwächen», sagt Michel Steinmetz, Leiter des Labors für Biomolekulare Forschung. «Indem wir sie miteinander kombinieren, stellen wir sicher, dass uns keine Bindungsstelle am Protein entgeht.»
Elf neue sind dabei
Insgesamt fanden die Forschenden 27 Bindungsstellen am Tubulin, an denen Moleküle oder andere Proteine andocken können. «11 davon wurden zuvor noch nie beschrieben», sagt Tobias Mühlethaler. Zudem identifizierten die Forschenden 56 Fragmente, die an Tubulin binden und sich unter Umständen dafür eignen, neue Wirkstoffe zu entwickeln.
Wie die Forschenden betonen, ist ihre Vorgehensweise auch auf andere Proteine übertragbar. «Wir haben hier eine Methode entwickelt, um frühe sogenannte Leitverbindungen und damit neue Ausgangspunkte für die Entwicklung von Wirkstoffen zu finden», sagt Michel Steinmetz. Die Methode sei für alle Proteine geeignet, von denen es Kristalle hoher Qualität gibt.
«Die Suche nach möglichen neuen Leitverbindungen, auch ‘lead molecules’ genannt, ist ein Schwerpunkt an der Synchrotron Lichtquelle Schweiz SLS», fügt Steinmetz hinzu. «Dies wird von noch grösserer Bedeutung sein, nachdem das für die kommenden Jahre geplante Upgrade zur SLS 2.0 stattgefunden hat».
Text: Paul Scherrer Institut/Brigitte Osterath